Speed of stochastic locally contractive systems
Brofferio, Sara
Ann. Probab., Tome 31 (2003) no. 1, p. 2040-2067 / Harvested from Project Euclid
The auto-regressive model on $\RR ^{d}$ defined by the recurrence equation $ Y^{y}_{n}=a_{n}Y^{y}_{n-1}+B_{n} $, where $ \{ (a_{n},B_{n})\} _{n} $\vspace*{-0.5pt} is a sequence of i.i.d. random variables in $ \RR ^{*}_{+}\times \RR ^{d} $, has, in the critical case $ \esp {\log a_{1}}=0 $,\vspace*{-0.5pt} a local contraction property, that is, when $ Y^{y}_{n} $ is in a compact set the distance $ | Y^{y}_{n}-Y^{x}_{n}| $ converges almost surely to 0. We determine the speed of this convergence and we use this asymptotic estimate to deal with some higher-dimensional situations. In particular, we prove the recurrence and the local contraction property with speed for an autoregressive model whose linear part is given by triangular matrices with first Lyapounov exponent equal to 0. We extend the previous results to a Markov chain on a nilpotent Lie group induced by a random walk on a solvable Lie group of $ \mathcal{NA} $ type.
Publié le : 2003-10-14
Classification:  Random coefficients autoregressive model,  limit theorems,  stability,  random walk,  contractive system,  iterated functions system,  60J10,  60B12,  60B15,  60G50
@article{1068646377,
     author = {Brofferio, Sara},
     title = {Speed of stochastic locally contractive systems},
     journal = {Ann. Probab.},
     volume = {31},
     number = {1},
     year = {2003},
     pages = { 2040-2067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1068646377}
}
Brofferio, Sara. Speed of stochastic locally contractive systems. Ann. Probab., Tome 31 (2003) no. 1, pp.  2040-2067. http://gdmltest.u-ga.fr/item/1068646377/