Existence of unstable sets for invariant sets in compact semiflows. Applications in order-preserving semiflows
Poláčik, Peter
Commentationes Mathematicae Universitatis Carolinae, Tome 031 (1990), p. 263-276 / Harvested from Czech Digital Mathematics Library
Publié le : 1990-01-01
Classification:  34C30,  34C35,  35B40,  37-99,  37C10,  58F25
@article{106856,
     author = {Peter Pol\'a\v cik},
     title = {Existence of unstable sets for invariant sets in compact semiflows. Applications in order-preserving semiflows},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {031},
     year = {1990},
     pages = {263-276},
     zbl = {0724.58054},
     mrnumber = {1077897},
     language = {en},
     url = {http://dml.mathdoc.fr/item/106856}
}
Poláčik, Peter. Existence of unstable sets for invariant sets in compact semiflows. Applications in order-preserving semiflows. Commentationes Mathematicae Universitatis Carolinae, Tome 031 (1990) pp. 263-276. http://gdmltest.u-ga.fr/item/106856/

N. D. Alikakos P. Hess H. Matano Discrete order preserving semigroups and stability for periodic parabolic differential equations, preprint. | MR 1027972

J. K. Hale Theory of Functional Differential Equations, Springer-Verlag, New York 1977. (1977) | MR 0508721 | Zbl 0352.34001

J. K. Hale Asymptotic Behaviour of Dissipative Systems, AMS Publications, Providence 1988. (1988) | MR 0941371

P. Hess On stabilization of discrete strongly order-preserving semigroups and dynamical processes, Proceedings of Trends in Semigroup Theory and Applications, M. Dekker (ed.), to appear. | MR 1009399

M. W. Hirsch Systems of differential equations that are competitive or cooperative. I: Limit sets, SIAM J. Math. Anal. 13 (1982), 167-179. (1982) | MR 0647119

M. W. Hirsch Systems of differential equations that are competitive or cooperative. II: Convergence almost everywhere, SIAM J. Math. Anal. 16 (1985), 423-439. (1985) | MR 0783970 | Zbl 0658.34023

M. W. Hirsch Systems of differential equations that are competitive or cooperative. III: Competing species, Nonlinearity 1 (1988), 51-71. (1988) | MR 0928948

M. W. Hirsch The dynamical systems approach to differential equations, Bull. AMS 11 (1984), 1-64. (1984) | MR 0741723 | Zbl 0541.34026

M. W. Hirsch Differential equations and convergence almost everywhere in strongly monotone flows, Contemporary Math. 17, Providence 1983, 267-285. (1983) | MR 0706104

M. W. Hirsch Stability and convergence in strongly monotone dynamical sets, J. Reine Angew. Math. 383 (1988), 1-58. (1988) | MR 0921986

H. Matano Existence of nontrivial unstable sets for equilibriums of strongly orderpreserving systems, J. Fac. Sci. Univ. Tokyo 30 (1983), 645-673. (1983) | MR 0731522

H. Matano Correction to: "Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems", J. Fac. Sci. Univ. Tokyo 34 (1987), 853-855. (1987) | MR 0927615 | Zbl 0656.35009

H. Matano Strong comparison principle in nonlinear parabolic equations, in "Nonlinear Parabolic Equations: Qualitative Properties of Solutions", L. Boccardo, A. Tesei (eds.), 148-155, Pitman, London 1987. (1987) | MR 0901104 | Zbl 0664.35048

J. Mierczyński On a generic behaviour in strongly cooperative differential equations, Proceedings of the Third Colloquium on Qualitative Properties of Differential Equations, L. Hatvani (ed.), to appear. | MR 1062664

J. Mierczyński P. Poláčik Symmetry actions on strongly monotone dynamical systems, Math. Annalen 283 (1989), 1-11. (1989) | MR 0973801

J. Palis W. De Melo Geometric Theory of Dynamical Systems, Springer - Verlag, New York 1982. (1982) | MR 0669541

P. Poláčik Convergence in smooth strongly monotone flows defined by semilinear parabolic equations, J. Diff. Eqn. 79 (1989), 89-110. (1989) | MR 0997611

P. Poláčik Domains of attraction of equilibria and monotonicity properties of convergent trajectories in semilinear parabolic systems admitting strong comparison principle, J. Reine Angew. Math. 400 (1989), 32-56. (1989) | MR 1013724

P. Poláčik Generic properties of strongly monotone semiflows defined by ordinary and parabolic differential equations, Proceedings of the Third Colloquium on Qualitative Properties of Differential Equations, L. Hatvani (ed.), to appear. | MR 1062675

H. L. Smith Monotone semiflows generated by functional differential equations, J. Diff. Eqn. 66 (1987), 420-442. (1987) | MR 0876806 | Zbl 0612.34067

H. L. Smith Systems of ordinary differential equations which generate an order preserving flow, A survey of results, SIAM Review 30 (1988), 87-114. (1988) | MR 0931279 | Zbl 0674.34012

H. L. Smith H. R. Thieme Monotone semiflows in scalar non-quasimonotone functional differential equations, J. Math. Anal. Appl., to appear. | MR 1067429

H. L. Smith H. R. Thieme Remarks on monotone dynamical systems, preprint.