Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem
Feireisl, Eduard
Commentationes Mathematicae Universitatis Carolinae, Tome 031 (1990), p. 243-255 / Harvested from Czech Digital Mathematics Library
Publié le : 1990-01-01
Classification:  35B10,  35B45,  35Q20,  35Q72,  73B30,  73D35,  74A15,  74B10,  74B20
@article{106854,
     author = {Eduard Feireisl},
     title = {Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {031},
     year = {1990},
     pages = {243-255},
     zbl = {0718.73013},
     mrnumber = {1077895},
     language = {en},
     url = {http://dml.mathdoc.fr/item/106854}
}
Feireisl, Eduard. Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem. Commentationes Mathematicae Universitatis Carolinae, Tome 031 (1990) pp. 243-255. http://gdmltest.u-ga.fr/item/106854/

Dafermos C. M. Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal. 13 (1982), 397-408. (1982) | MR 0653464 | Zbl 0489.73124

Day W. A. Steady forced vibrations in coupled thermoelasticity, Arch. Rational Mech. Anal. 93 (1986), 323-334. (1986) | MR 0829832 | Zbl 0597.73008

Diperna R. J. Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), 27-70. (1983) | MR 0684413 | Zbl 0519.35054

Greenberg J. M.; Maccamy R. C.; Mizel V. J. On the existence, uniqueness and stability of solutions of the equation $\rho\chi_{tt} = E(\chi_x)\chi_{xx} + \lambda \chi_{xx}$, J. Math. Mech. 17 (1968), 707-728. (1968) | MR 0225026

Kato T. Locally coercive nonlinear equations, with applications to some periodic solutions, Duke Math. J. 51 (1984), 923-936. (1984) | MR 0771388 | Zbl 0571.47051

Klainerman S. Global existence for nonlinear wave equation, Comm. Pure Appl. Math. 33 (1980), 43-101. (1980) | MR 0544044

Matsumura A. Global existence and asymptotics of the solutions of the second order quasilinear hyperbolic equations with the first order dissipation, Publ. Res. Inst. Math. Soc. 13 (1977), 349-379. (1977) | MR 0470507 | Zbl 0371.35030

Racke R. Initial boundary value problems in one-dimensional non-linear thermoelasticity, Math. Meth. Appl. Sci. 10 (1988), 517-529. (1988) | MR 0965419

Rothe E. H. Introduction to various aspects of degree theory in Banach spaces, Providence AMS, 1986. (1986) | MR 0852987 | Zbl 0597.47040

Shibata Y. On the global existence of classical solutions of mixed problem for some second order nonlinear hyperbolic operators with dissipative term in the interior domain, Funkcialaj Ekvacioj 25 (1982), 303-345. (1982) | MR 0707564 | Zbl 0524.35070

Slemrod M. Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity, Arch. Rational Mech. Anal. 76 (1981), 97-134. (1981) | MR 0629700 | Zbl 0481.73009

Zheng S. Initial boundary value problems for quasilinear hyperbolic-parabolic coupled systems in higher dimensional spaces, Chinese Ann. of Math. 4B(4) (1983), 443-462. (1983) | MR 0741742 | Zbl 0509.35056

Zheng S. Global solutions and applications to a class of quasilinear hyperbolic-parabolic coupled system, Scienta Sinka, Ser. A 27 (1984), 1274-1286. (1984) | MR 0794293

Zheng S.; Shen W. Global solutions to the Cauchy problem of quasilinear hyperbolic-parabolic coupled system, Scienta Sinica, Ser. A 10 (1987), 1133-1149. (1987) | MR 0942420