On the existence of positive solutions for periodic parabolic sublinear problems
Godoy, T. ; Kaufmann, U.
Abstr. Appl. Anal., Tome 2003 (2003) no. 7, p. 975-984 / Harvested from Project Euclid
We give necessary and sufficient conditions for the existence of positive solutions for sublinear Dirichlet periodic parabolic problems $Lu=g(x,t,u)$ in $\Omega\times\mathbb{R}$ (where $\Omega\subset\mathbb{R}^{N}$ is a smooth bounded domain) for a wide class of Carathéodory functions $g:\Omega\times\mathbb{R}\times[ 0,\infty) \rightarrow\mathbb{R}$ satisfying some integrability and positivity conditions.
Publié le : 2003-11-06
Classification:  35K20,  35P05,  35B10,  35B50
@article{1068472881,
     author = {Godoy, T. and Kaufmann, U.},
     title = {On the existence of positive solutions for periodic
parabolic sublinear problems},
     journal = {Abstr. Appl. Anal.},
     volume = {2003},
     number = {7},
     year = {2003},
     pages = { 975-984},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1068472881}
}
Godoy, T.; Kaufmann, U. On the existence of positive solutions for periodic
parabolic sublinear problems. Abstr. Appl. Anal., Tome 2003 (2003) no. 7, pp.  975-984. http://gdmltest.u-ga.fr/item/1068472881/