@article{106750, author = {Enayet U, Tarafdar}, title = {Five equivalent theorems on a convex subset of a topological vector space}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {030}, year = {1989}, pages = {323-326}, zbl = {0681.47029}, mrnumber = {1014132}, language = {en}, url = {http://dml.mathdoc.fr/item/106750} }
Tarafdar, Enayet U,. Five equivalent theorems on a convex subset of a topological vector space. Commentationes Mathematicae Universitatis Carolinae, Tome 030 (1989) pp. 323-326. http://gdmltest.u-ga.fr/item/106750/
Variational inequalities, complementarity problems, and duality theorems, J. Math. Anal. Appl. 58 (1977), 1-10. (1977) | MR 0513305 | Zbl 0383.49005
A minimax inequality and applications, Inequalities, Vol III, (Ed. O. Shisha), New York, London, Academic Press 13, 1972, pp. 103-113. (1972) | MR 0341029
Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), 519-537. (1984) | MR 0735533 | Zbl 0515.47029
Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929), 132-137. (1929)
Convex sets, fixed points, variational and minimax inequalities, Bull. Austral. Math. Soc. 34 (1986), 107-117. (1986) | MR 0847978 | Zbl 0597.47038
A fixed point theorem equivalent to Fan-Knaster-Kuratowski-Mazurkiewic's theorem, J. Math. Anal. Appl. 128 (1987), 475-479. (1987) | MR 0917380
On nonlinear variational inequalities, Proc. Amer. Math. Soc. 67 (1977), 95-98. (1977) | MR 0467408 | Zbl 0369.47029
Variational problems via a fixed point theorem, Indian Journal of Mathematics 28 (1986), 229-240. (1986) | MR 0900728 | Zbl 0641.49005