@article{106702, author = {Libor Vesel\'y}, title = {Some new results on accretive multivalued operators}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {030}, year = {1989}, pages = {45-55}, zbl = {0665.47036}, mrnumber = {995700}, language = {en}, url = {http://dml.mathdoc.fr/item/106702} }
Veselý, Libor. Some new results on accretive multivalued operators. Commentationes Mathematicae Universitatis Carolinae, Tome 030 (1989) pp. 45-55. http://gdmltest.u-ga.fr/item/106702/
The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284-314. (1964) | MR 0163143 | Zbl 0123.30701
On the characterization of Asplund spaces, J. Austral. Math. Soc. (Ser.A) 32 (1982), 134-144. (1982) | MR 0643437
Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508- 520. (1967) | MR 0226230 | Zbl 0163.38303
Monotone operators in Asplund spaces, C.R. Acad. Bulgare Sci 30 (1977), 963-964. (1977) | MR 0463981 | Zbl 0377.47036
Maximal monotone and accretive multivalued mappings and structure of Banach spaces, Function spaces, Proc. Int. Conf. Poznań 1986, Teubner-Texte zur Math. 103 (1988), 170-177. (1986) | MR 1066532
Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 202-204. (1984) | MR 0740171
Stronger estimates of smallness of sets of Fréchet nondtfferentiability of convex functions, Proceedings of the 11-th Winter School, Supplement Rend. Circ. Mat. Palermo (Ser. II) (1984). (1984) | MR 0744387
Sets of $\sigma $-porosity and sets of $\sigma $-porosity$(q)$, Čas. Pěst. Mat. 101 (1976), 350-359. (1976) | MR 0457731 | Zbl 0341.30026