The class of $\aleph$-spaces is invariant of closed mappings with Lindelöf fibres
Sun, Shu Hao
Commentationes Mathematicae Universitatis Carolinae, Tome 029 (1988), p. 351-354 / Harvested from Czech Digital Mathematics Library
Publié le : 1988-01-01
Classification:  54C10,  54E18
@article{106644,
     author = {Shu Hao Sun},
     title = {The class of $\aleph$-spaces is invariant of closed mappings with Lindel\"of fibres},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {029},
     year = {1988},
     pages = {351-354},
     zbl = {0656.54021},
     mrnumber = {957403},
     language = {en},
     url = {http://dml.mathdoc.fr/item/106644}
}
Sun, Shu Hao. The class of $\aleph$-spaces is invariant of closed mappings with Lindelöf fibres. Commentationes Mathematicae Universitatis Carolinae, Tome 029 (1988) pp. 351-354. http://gdmltest.u-ga.fr/item/106644/

L. Foged Characterizations of $\chi $-spaces, Pacific J. Math. 110 (1984), 59-63. (1984) | MR 0722737

L. Foged Normality in k- and $\chi $-spaces, Top. and Appl. 22 (1986), 223-240. (1986) | MR 0842657

J. Guthrie Mapping spaces and cs-networks, Pacific J. Math. 47 (1973), 465-471. (1973) | MR 0339058 | Zbl 0253.54025

P. O'Meara A new class of topological spaces, Dissertation, University of Alberta (1966). (1966)

P. O'Meara On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc. 29 (1971), 183-189. (1971) | MR 0276919 | Zbl 0214.21105

F. Siwiec J. Nagata A note on nets and metrization, Proc. Japan Acad. 44 (1968), 623-627. (1968) | MR 0242116

Y. Tanaka A characterization for the products of k- and $\chi $-spaces and related results, Proc. Amer. Math.Soc. 59 (1976), 149-155. (1976) | MR 0415580