On the convergence of scaled random samples
Pritchard, Geoffrey
Ann. Probab., Tome 24 (1996) no. 2, p. 1490-1506 / Harvested from Project Euclid
The scaled-sample problem asks the following question: given a distribution on a normed linear space E, when do there exist constants ${\gamma_n} such that $X^{(j)}/\gamma_n}_{j=1}^n$ converges as $n \to \infty$ (in the Hausdorff metric given by the norm) to a fixed set K? (Here ${X^{(j)}}$ are i.i.d. with the given distribution). The main result presented here relates the convergence of scaled samples to a large deviation principle for single observations, thereby achieving a dimension-free description of the problem.
Publié le : 1996-07-14
Classification:  Scaled sample,  large deviations,  regular variation,  60G70,  60B12,  60B11,  60F15,  60D05
@article{1065725190,
     author = {Pritchard, Geoffrey},
     title = {On the convergence of scaled random samples},
     journal = {Ann. Probab.},
     volume = {24},
     number = {2},
     year = {1996},
     pages = { 1490-1506},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1065725190}
}
Pritchard, Geoffrey. On the convergence of scaled random samples. Ann. Probab., Tome 24 (1996) no. 2, pp.  1490-1506. http://gdmltest.u-ga.fr/item/1065725190/