@article{106554, author = {Bogdan Rzepecki}, title = {Existence of solutions of the Darboux problem for partial differential equations in Banach spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {028}, year = {1987}, pages = {421-426}, zbl = {0638.35058}, mrnumber = {912570}, language = {en}, url = {http://dml.mathdoc.fr/item/106554} }
Rzepecki, Bogdan. Existence of solutions of the Darboux problem for partial differential equations in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 028 (1987) pp. 421-426. http://gdmltest.u-ga.fr/item/106554/
Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. (1967) | MR 0222426 | Zbl 0174.46001
Measure of Noncompactness in Banach Spaces, Lect. Notes Pure Applied Math. 60, Marcel Dekker, New York 1980. (1980) | MR 0591679
Sull' approssimazione, col metodo di Tonelli, delle soluzioni del problema di Darboux per l'equazione $u_{xyz} = f(x,y,z,u,u_x,u_y ,u_z)$, Le Matematiche 23 (1) (196B), 107-123. (196B) | MR 0241830
The Coursat problem for the partial differential equation $u_xyz = f$, A mirage, J. Math. Mech. 16 (1967), 709-713. (1967) | MR 0203264
An existence theorem for the equation $u_xyz = f$, Arch. Rational Mech. Anal. 9 (1962), 64-76. (1962) | MR 0132898
On densifying and related mappings and their application in nonlinear functional analysis, Theory of Nonlinear Operators, Akademie-Verlag, Berlin 1974, 15-46. (1974) | MR 0361946
Ordinary Differential Equations in Banach Spaces, Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. (1977) | MR 0463601 | Zbl 0361.34050
Su un problema ai limiti per l'equazione $u_{xyz} = f(x,y,z,u,u_x,u_y,u_z)$, Matematiche (Catania) 21 (1966), 396-412. (1966) | MR 0209673
Sur l'équations et l'unicité des solutions de certaines équations differentielles du type $u_{xyz} = f(x,y,z,u,u_x,u_y,u_z,u_{xy},u_{xz},u_{yz})$, Arm. Polon. Math. 11 (1961), 75-106. (1961) | MR 0136880
The fixed point index and fixed point theorems for k-set-contraction, Ph.D. dissertation, University of Chicago, 1969. (1969)
Existence and uniqueness of solutions of the Darboux problem for the equation${\partial^3u}\over {\partial x_1 \partial x_2 \partial x_3} = f {(x_1, x_2, x_3, u, {{\partial u}\over{ \partial x_1}}, {{\partial u}\over{ \partial x_2}}, {{\partial u}\over{ \partial x_3}}, {{\partial^2 u}\over{ \partial x_1 \partial x_2}}, {{\partial^2 u}\over{ \partial x_1 \partial x_3}}, {{\partial^2 u}\over{ \partial x_2 \partial x_3}})}$, Ann. Polon. Math. 13 (1963), 267-277. (1963) | MR 0157135 | Zbl 0168.07502
Limit compact and condensing operators, Math. Surveys, 27 (1972), 86-144. (1972) | MR 0428132