Nonparametric volatility density estimation
Van Es, Bert ; Spreij, Peter ; Van Zanten, Harry
Bernoulli, Tome 9 (2003) no. 3, p. 451-465 / Harvested from Project Euclid
We consider a continuous-time stochastic volatility model. The model contains a stationary volatility process, the density of which, at a fixed instant in time, we aim to estimate. We assume that we observe the process at discrete instants in time. The sampling times will be equidistant with vanishing distance. A Fourier-type deconvolution kernel density estimator based on the logarithm of the squared processes is proposed to estimate the volatility density. An expansion of the bias and a bound on the variance are derived.
Publié le : 2003-06-14
Classification:  deconvolution,  density estimation,  kernel estimator,  mixing,  stochastic volatility models
@article{1065444813,
     author = {Van Es, Bert and Spreij, Peter and Van Zanten, Harry},
     title = {Nonparametric volatility density estimation},
     journal = {Bernoulli},
     volume = {9},
     number = {3},
     year = {2003},
     pages = { 451-465},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1065444813}
}
Van Es, Bert; Spreij, Peter; Van Zanten, Harry. Nonparametric volatility density estimation. Bernoulli, Tome 9 (2003) no. 3, pp.  451-465. http://gdmltest.u-ga.fr/item/1065444813/