Optimal confidence bands for shape-restricted curves
Dümbgen, Lutz
Bernoulli, Tome 9 (2003) no. 3, p. 423-449 / Harvested from Project Euclid
Let $Y$ be a stochastic process on $[0,1]$ satisfying $\rm dY(t)=n^{1/2}f(t)\rm dt + \rm dW(t)$, where $n\ge 1$ is a given scale parameter (`sample size'), $W$ is standard Brownian motion and $f$ is an unknown function. Utilizing suitable multiscale tests, we construct confidence bands for $f$ with guaranteed given coverage probability, assuming that $f$ is isotonic or convex. These confidence bands are computationally feasible and shown to be asymptotically sharp optimal in an appropriate sense.
Publié le : 2003-06-14
Classification:  adaptivity,  concave,  convex,  isotonic,  kernel estimator,  local smoothness,  minimax bounds,  multiscale testing
@article{1065444812,
     author = {D\"umbgen, Lutz},
     title = {Optimal confidence bands for shape-restricted curves},
     journal = {Bernoulli},
     volume = {9},
     number = {3},
     year = {2003},
     pages = { 423-449},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1065444812}
}
Dümbgen, Lutz. Optimal confidence bands for shape-restricted curves. Bernoulli, Tome 9 (2003) no. 3, pp.  423-449. http://gdmltest.u-ga.fr/item/1065444812/