@article{106393, author = {Patrick Oswald}, title = {On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {026}, year = {1985}, pages = {565-577}, zbl = {0612.35055}, mrnumber = {817827}, language = {en}, url = {http://dml.mathdoc.fr/item/106393} }
Oswald, Patrick. On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball. Commentationes Mathematicae Universitatis Carolinae, Tome 026 (1985) pp. 565-577. http://gdmltest.u-ga.fr/item/106393/
A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math, pures et appl. 61 (1982), 41-63. (1982) | MR 0664341
A priori bounds for positive solutions ot nonlinear elliptic equations in two variables, Duke Math. J. 41 (1974), 759-774. (1974) | MR 0364859
Positive solutions of some nonlinear elliptic boundary value problems, J. Math. Anal. Appl. 51 (1975), 461-482. (1975) | MR 0382850
On a class of superlinear elliptic problems, Comm. in P.D.E. 2 (1977), 601-614. (1977) | MR 0509489
Eigenfunctions of the equation $\Delta u + \lambda \cdot f(u) = 0$, Soviet Math. Dokl. 6 (1965), 1408-1411. (1965) | MR 0192184
Symmetric and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. (1979) | MR 0544879
Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, 1967. (1967) | MR 0219861