On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball
Oswald, Patrick
Commentationes Mathematicae Universitatis Carolinae, Tome 026 (1985), p. 565-577 / Harvested from Czech Digital Mathematics Library
Publié le : 1985-01-01
Classification:  35A05,  35A30,  35B45,  35J65,  35P30
@article{106393,
     author = {Patrick Oswald},
     title = {On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {026},
     year = {1985},
     pages = {565-577},
     zbl = {0612.35055},
     mrnumber = {817827},
     language = {en},
     url = {http://dml.mathdoc.fr/item/106393}
}
Oswald, Patrick. On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball. Commentationes Mathematicae Universitatis Carolinae, Tome 026 (1985) pp. 565-577. http://gdmltest.u-ga.fr/item/106393/

D. G. De Figueiredo P.-L. Lions R. D. Nussbaum A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math, pures et appl. 61 (1982), 41-63. (1982) | MR 0664341

R. E. L. Turner A priori bounds for positive solutions ot nonlinear elliptic equations in two variables, Duke Math. J. 41 (1974), 759-774. (1974) | MR 0364859

R. Nussbaum Positive solutions of some nonlinear elliptic boundary value problems, J. Math. Anal. Appl. 51 (1975), 461-482. (1975) | MR 0382850

H. Brezis R. E. L. Turner On a class of superlinear elliptic problems, Comm. in P.D.E. 2 (1977), 601-614. (1977) | MR 0509489

S. I. Pohozaev Eigenfunctions of the equation $\Delta u + \lambda \cdot f(u) = 0$, Soviet Math. Dokl. 6 (1965), 1408-1411. (1965) | MR 0192184

B. Gidas W.-M. Ni L. Nirenberg Symmetric and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. (1979) | MR 0544879

M. Protter H. Weinberger Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, 1967. (1967) | MR 0219861