Equivariant group cohomology and Brauer group
Cegarra, A. M. ; Garzón, A.R.
Bull. Belg. Math. Soc. Simon Stevin, Tome 10 (2003) no. 1, p. 451-459 / Harvested from Project Euclid
In this paper we prove that, for any Galois finite field extension $F/K$ on which a separated group of operators $\Gamma$ is acting, there is an isomorphism between the group of equivariant isomorphism classes of finite dimensional central simple $K$-algebras endowed with a $\Gamma$-action and containing $F$ as an equivariant strictly maximal subfield and the second equivariant cohomology group of the Galois group of the extension.
Publié le : 2003-09-14
Classification:  Group cohomology,  Brauer group,  Azumaya algebra,  Galois extension,  group of operators,  12G05,  16H05,  16K50,  20J06
@article{1063372349,
     author = {Cegarra, A. M. and Garz\'on, A.R.},
     title = {Equivariant group cohomology and Brauer group},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {10},
     number = {1},
     year = {2003},
     pages = { 451-459},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1063372349}
}
Cegarra, A. M.; Garzón, A.R. Equivariant group cohomology and Brauer group. Bull. Belg. Math. Soc. Simon Stevin, Tome 10 (2003) no. 1, pp.  451-459. http://gdmltest.u-ga.fr/item/1063372349/