Sur le spectre de Fučik avec poids
Bentahar, B. ; Massghati, A.
Bull. Belg. Math. Soc. Simon Stevin, Tome 10 (2003) no. 1, p. 355-368 / Harvested from Project Euclid
Let $\Omega$ be a bounded domain in $\mathbb R^N$ and $m_1$, $m_2$ two functions in $L^\infty(\Omega)$. In the present work, we study a new spectrum constitued by the set of pairs $(\alpha,\beta)$ of $\R ^2$ for which the problem $$ \left\{ \begin{array}{rcr} -\bigtriangleup u & = & \alpha m_1 u^+-\be m_2 u^- \quad\mbox{ in} \:\: \Omega,\\ u & = & 0 \quad \hspace{2,4cm}\quad\mbox{ on}\:\: \partial\Omega, \end{array} \right. $$ has a nontrivial solution, where $u^\pm=\di\max(0,\pm u)$. We study then the nonresonance with respect to this spectrum in a non autonomous problem.
Publié le : 2003-09-14
Classification:  Spectre de Fučik,  laplacien,  point selle,  degré de Leray-Schauder,  non résonance,  35J67
@article{1063372342,
     author = {Bentahar, B. and Massghati, A.},
     title = {Sur le spectre de Fu\v cik avec poids},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {10},
     number = {1},
     year = {2003},
     pages = { 355-368},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1063372342}
}
Bentahar, B.; Massghati, A. Sur le spectre de Fučik avec poids. Bull. Belg. Math. Soc. Simon Stevin, Tome 10 (2003) no. 1, pp.  355-368. http://gdmltest.u-ga.fr/item/1063372342/