The Bundle Structure of Noncommutative Tori over $UHF$-Algebras
Park, Chun-Gil
Bull. Belg. Math. Soc. Simon Stevin, Tome 10 (2003) no. 1, p. 321-328 / Harvested from Project Euclid
The noncommutative torus $C^*(\mathbb Z^n,\,\omega)$ of rank $n$ is realized as the $C^*$-algebra of sections of a locally trivial continuous $C^*$-algebra bundle over $\widehat{S_{\omega}}$ with fibres $C^*(\mathbb Z^n/S_{\omega},\, \omega_1)$ for some totally skew multiplier $\omega_1$ on $\mathbb Z^n/S_{\omega}$. It is shown that $C^*(\mathbb Z^n/S_{\omega},\,\omega_1)$ is isomorphic to $A_{\varphi}\otimes M_k(\mathbb C)$ for some completely irrational noncommutative torus $A_{\varphi}$ and some positive integer $k$, and that $A_{\omega} \otimes M_{l^{\infty}}$ has the trivial bundle structure if and only if the set of prime factors of $k$ is a subset of the set of prime factors of $l$. This is applied to understand the bundle structure of the tensor products of Cuntz algebras with noncommutative tori.
Publié le : 2003-09-14
Classification:  $C^*$-algebra bundle,  twisted group $C^*$-algebra,  $K$-theory,  Cuntz algebra,  46L87,  46L05
@article{1063372339,
     author = {Park, Chun-Gil},
     title = {The Bundle Structure of Noncommutative Tori over
$UHF$-Algebras},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {10},
     number = {1},
     year = {2003},
     pages = { 321-328},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1063372339}
}
Park, Chun-Gil. The Bundle Structure of Noncommutative Tori over
$UHF$-Algebras. Bull. Belg. Math. Soc. Simon Stevin, Tome 10 (2003) no. 1, pp.  321-328. http://gdmltest.u-ga.fr/item/1063372339/