@article{106318, author = {Miloslav Feistauer and Jan Mandel and Jind\v rich Ne\v cas}, title = {Entropy regularization of the transonic potential flow problem}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {025}, year = {1984}, pages = {431-443}, zbl = {0563.35006}, mrnumber = {775562}, language = {en}, url = {http://dml.mathdoc.fr/item/106318} }
Feistauer, Miloslav; Mandel, Jan; Nečas, Jindřich. Entropy regularization of the transonic potential flow problem. Commentationes Mathematicae Universitatis Carolinae, Tome 025 (1984) pp. 431-443. http://gdmltest.u-ga.fr/item/106318/
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II, Comm. Pure Appl. Math. 12 (1959), 623-727, 17 (1964), 35-92. (1959) | MR 0162050
Compactness principles in nonlinear operator approximation theory, Number. Funct. Anal. Optimiz. 1 (1979), 589-618. (1979) | MR 0552242
Reraarque sur l'article précedent de F. Murat, J. Math. pures et appl. 60 (1981), 321-322. (1981)
On the solvability of transonic potential flow problems, Z. für Analysis und ihre Anwendungen (to appear). | MR 0807140
Kačanov-Galerkin method, Comment. Math. Univ. Carolinae 14 (1973), 651-659. (1973) | MR 0365300
Lectures on Numerical Methods for Nonlinear Variational Problems, Springer-Verlag Heidelberg 1980. (1980) | MR 0597520
On the computation of transonic flows, In: H. Fujita (Ed.): Functlonal Analysis and Numerical Analysis, Japan Society for the Promotion of Science, 1978. (1978)
On an iterative method for nonlinear variational inequalities, Numer. Funct. Anal. Optimiz. (Submitted). | MR 0855440 | Zbl 0631.65070
An $L^p$ estimate for the gradient of solutions of second order elliptic divergence equations, Ann. S.N.S. Pisa 17 (1963), 189-206. (1963) | MR 0159110
L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$, J. Math. pures et appl. 60 (1981), 309-321. (1981)
Les méthodes directes en théorie des équations elliptiques, Academia, Praha 1967. (1967) | MR 0227584
Solution of Signorini's contact problem in the deformation theory of plasticity by secant modulus method, Apl. Mat. 28 (1983), 199-214. (1983) | MR 0701739