On the radius of a set in a Hilbert space
Daneš, Josef
Commentationes Mathematicae Universitatis Carolinae, Tome 025 (1984), p. 355-362 / Harvested from Czech Digital Mathematics Library
Publié le : 1984-01-01
Classification:  46C05,  47H10,  47H99,  52A40,  58C05
@article{106307,
     author = {Josef Dane\v s},
     title = {On the radius of a set in a Hilbert space},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {025},
     year = {1984},
     pages = {355-362},
     zbl = {0568.46018},
     mrnumber = {768823},
     language = {en},
     url = {http://dml.mathdoc.fr/item/106307}
}
Daneš, Josef. On the radius of a set in a Hilbert space. Commentationes Mathematicae Universitatis Carolinae, Tome 025 (1984) pp. 355-362. http://gdmltest.u-ga.fr/item/106307/

J. Daneš On densifying and related mappings and their application in nonlinear functional analysis, in "Theory of Nonlinear Operators", Proceedings of Summer School (G. D. R., Neuendorf, 1972), Akademie-Verlag, Berlin (1974), 15-56. (1972) | MR 0361946

J. Daneš Some remarks on nonlinear functional analysis, Summer School on "Nonlinear Functional Analysis and Mechanics", Stará Lesná, High Tatras, Czechoslovakia, Sept. 23-27 (1974). (1974)

H. W. E. Jung Über die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math. 123 (1901), 241-257. (1901)

H. Steinlein , A private communication (1978). (1978)