A combinatorial description of the minimal free resolution of a
lattice ideal allows us to the connection of Integer Linear
Programming and Algebra. The non null reduced homology spaces of
some simplicial complexes are the key. The extremal rays of the
associated cone reduce the number of variables.
@article{1063050153,
author = {Briales, Emilio and Campillo, Antonio and Pis\'on, Pilar and Vigneron, Alberto},
title = {Minimal Resolutions of Lattice Ideals and Integer Linear
Programming},
journal = {Rev. Mat. Iberoamericana},
volume = {19},
number = {2},
year = {2003},
pages = { 287-306},
language = {en},
url = {http://dml.mathdoc.fr/item/1063050153}
}
Briales, Emilio; Campillo, Antonio; Pisón, Pilar; Vigneron, Alberto. Minimal Resolutions of Lattice Ideals and Integer Linear
Programming. Rev. Mat. Iberoamericana, Tome 19 (2003) no. 2, pp. 287-306. http://gdmltest.u-ga.fr/item/1063050153/