Minimal Resolutions of Lattice Ideals and Integer Linear Programming
Briales, Emilio ; Campillo, Antonio ; Pisón, Pilar ; Vigneron, Alberto
Rev. Mat. Iberoamericana, Tome 19 (2003) no. 2, p. 287-306 / Harvested from Project Euclid
A combinatorial description of the minimal free resolution of a lattice ideal allows us to the connection of Integer Linear Programming and Algebra. The non null reduced homology spaces of some simplicial complexes are the key. The extremal rays of the associated cone reduce the number of variables.
Publié le : 2003-09-14
Classification:  resolutions,  simplicial complex,  syzygy,  lattice ideal,  regularity,  integer linear programming,  Hilbert bases,  Gröbner bases,  13D02,  14M25,  13P10,  68W30,  90C27
@article{1063050153,
     author = {Briales, Emilio and Campillo, Antonio and Pis\'on, Pilar and Vigneron, Alberto},
     title = {Minimal Resolutions of Lattice Ideals and Integer Linear
Programming},
     journal = {Rev. Mat. Iberoamericana},
     volume = {19},
     number = {2},
     year = {2003},
     pages = { 287-306},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1063050153}
}
Briales, Emilio; Campillo, Antonio; Pisón, Pilar; Vigneron, Alberto. Minimal Resolutions of Lattice Ideals and Integer Linear
Programming. Rev. Mat. Iberoamericana, Tome 19 (2003) no. 2, pp.  287-306. http://gdmltest.u-ga.fr/item/1063050153/