The lattice of $R$-subalgebras of a bounded distributive lattice
Vrancken-Mawet, Luc
Commentationes Mathematicae Universitatis Carolinae, Tome 025 (1984), p. 1-17 / Harvested from Czech Digital Mathematics Library
Publié le : 1984-01-01
Classification:  06C10,  06D05,  06D15
@article{106275,
     author = {Luc Vrancken-Mawet},
     title = {The lattice of $R$-subalgebras of a bounded distributive lattice},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {025},
     year = {1984},
     pages = {1-17},
     zbl = {0542.06004},
     mrnumber = {749112},
     language = {en},
     url = {http://dml.mathdoc.fr/item/106275}
}
Vrancken-Mawet, Luc. The lattice of $R$-subalgebras of a bounded distributive lattice. Commentationes Mathematicae Universitatis Carolinae, Tome 025 (1984) pp. 1-17. http://gdmltest.u-ga.fr/item/106275/

Adams M. E. The Frattini sublattice of a distributive lattice, Alg. Univ. vol. 3/2 (1973), 216-228. (1973) | MR 0349510 | Zbl 0288.06015

Davey B. A. Subdirectly irreducible distributive double p-algebras, Alg. Univ. vol. 8/1, 73-88. | MR 0450160 | Zbl 0381.06019

Grätzer G. General lattice theory, Birk. Verlag Basel und Stuttgart (1978). (1978) | MR 0504338

Hansoul G.; Varlet J. Essential, strong and perfect extensions of lattices, Bull. Roy. Sci. Liège, 52 (1983), 22-24. (1983) | MR 0720422 | Zbl 0524.06015

Mayer R. D.; Pierce R. S. Boolean algebras with ordered bases, Pacific J. of Math. 10 (1960), 925-942. (1960) | MR 0130842 | Zbl 0097.02003

Priestley H. A. Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 24 (1972), 507-530. (1972) | MR 0300949 | Zbl 0323.06011

Priestley H. A. Ordered sets and duality for distributive lattices, to appear in the Proc. of the conference on ordered sets and their applications, Lyon, 1982. (1982) | MR 0779844