On some inequalities concerning {$\pi(x)$}
Garunkštis, R.
Experiment. Math., Tome 11 (2002) no. 3, p. 297-301 / Harvested from Project Euclid
We investigate the inequalities {\small $\pi(M+N)\leq a\pi(M/a)+\pi(N)$} and {\small $\pi(M+N)\leq a\left(\pi(M/a)+\pi(N/a)\right)$} with {\small $a\ge1$}.
Publié le : 2002-05-14
Classification:  Distribution of prime numbers,  prime counting function,  Hardy-Littlewood's conjecture,  11N05
@article{1062621222,
     author = {Garunk\v stis, R.},
     title = {On some inequalities concerning {$\pi(x)$}},
     journal = {Experiment. Math.},
     volume = {11},
     number = {3},
     year = {2002},
     pages = { 297-301},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1062621222}
}
Garunkštis, R. On some inequalities concerning {$\pi(x)$}. Experiment. Math., Tome 11 (2002) no. 3, pp.  297-301. http://gdmltest.u-ga.fr/item/1062621222/