On the minimizers of the Möbius cross energy of links
He, Zheng-Xu
Experiment. Math., Tome 11 (2002) no. 3, p. 244-248 / Harvested from Project Euclid
We give a geometric interpretation for the Euler-Lagrange equation for the Möbius cross energy of (nontrivially linked) 2-component links in the euclidean 3-space. The minimizer of this energy is conjectured to be a Hopf link of 2 round circles. We prove some elementary properties of the minimizers using the Euler-Lagrange equations. In particular, we give a rigorous proof of the fact that the minimizer is topologically a Hopf link.
Publié le : 2002-05-14
Classification:  M\"obius cross energy,  Hopf link,  58E10,  49J10,  57M25
@article{1062621218,
     author = {He, Zheng-Xu},
     title = {On the minimizers of the M\"obius cross energy of links},
     journal = {Experiment. Math.},
     volume = {11},
     number = {3},
     year = {2002},
     pages = { 244-248},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1062621218}
}
He, Zheng-Xu. On the minimizers of the Möbius cross energy of links. Experiment. Math., Tome 11 (2002) no. 3, pp.  244-248. http://gdmltest.u-ga.fr/item/1062621218/