Computations of cyclotomic lattices
Batut, Christian ; Quebbemann, Heinz-Georg ; Scharlau, Rudolf
Experiment. Math., Tome 4 (1995) no. 4, p. 177-179 / Harvested from Project Euclid
We study even modular lattices having level $\ell$ and dimension $2(p-\nobreak 1)$, for p prime, and arising from the ideal class group of the p-th cyclotomic extension of $\Q(\sqrt{-\ell})$. After giving the basic theory we concentrate on Galois-invariant ideals, obtain computational results on minimal vectors and isometries, and identify several old or new extremal lattices.
Publié le : 1995-05-14
Classification:  lattice,  integral quadratic form,  Craig lattice,  hermitian lattice,  modular lattice,  extremal lattice,  isodual Hermite number,  cyclotomic ideal,  11H06
@article{1062621076,
     author = {Batut, Christian and Quebbemann, Heinz-Georg and Scharlau, Rudolf},
     title = {Computations of cyclotomic lattices},
     journal = {Experiment. Math.},
     volume = {4},
     number = {4},
     year = {1995},
     pages = { 177-179},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1062621076}
}
Batut, Christian; Quebbemann, Heinz-Georg; Scharlau, Rudolf. Computations of cyclotomic lattices. Experiment. Math., Tome 4 (1995) no. 4, pp.  177-179. http://gdmltest.u-ga.fr/item/1062621076/