Un anneau d'entiers stablement libre et non libre
Cougnard, Jean
Experiment. Math., Tome 3 (1994) no. 4, p. 129-136 / Harvested from Project Euclid
The ring of integers $\OO_N$ of a tame Galois extension $N/\Qdb$ with Galois group $G$ is $\Zdb[G]$-projective. There exists a necessary and sufficient condition for $\OO_N\oplus\Zdb[G]$ and $\Zdb[G]^2$ to be isomorphic. We give a first example where this condition does not imply that $\OO_N$ is free over $\Zdb[G]$.
Publié le : 1994-05-14
Classification:  11R33,  11Y40
@article{1062620906,
     author = {Cougnard, Jean},
     title = {Un anneau d'entiers stablement libre et non libre},
     journal = {Experiment. Math.},
     volume = {3},
     number = {4},
     year = {1994},
     pages = { 129-136},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1062620906}
}
Cougnard, Jean. Un anneau d'entiers stablement libre et non libre. Experiment. Math., Tome 3 (1994) no. 4, pp.  129-136. http://gdmltest.u-ga.fr/item/1062620906/