@article{106197, author = {Rae W. J. Mitchell}, title = {Another note on closed $N$-cells in ${\bf R}^N$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {023}, year = {1982}, pages = {805-810}, zbl = {0518.57011}, mrnumber = {687573}, language = {en}, url = {http://dml.mathdoc.fr/item/106197} }
Mitchell, Rae W. J. Another note on closed $N$-cells in ${\bf R}^N$. Commentationes Mathematicae Universitatis Carolinae, Tome 023 (1982) pp. 805-810. http://gdmltest.u-ga.fr/item/106197/
A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961) 294 - 305. (1961) | MR 0131265 | Zbl 0109.15406
Sheaf Theory, McGraw-Hill, 1967. (1967) | MR 0221500 | Zbl 0158.20505
What is a topological manifold ? - the recognition problem, Bull. Amer. Math. Soc. 84 (1978) 832 - 866. (1978) | MR 0494113
Homotoping $\varepsilon $-maps to homeomorphisms, Amer. J. Math. 101 (1979) 567 - 582. (1979) | MR 0533191 | Zbl 0426.57005
Some wild cells and spheres in three dimensional space, Annals of Maths., 49 (1948) 979 - 990. (1948) | MR 0027512
Homotopy Theory; an introduction to algebraic topology, Academic Press, 1975. (1975) | MR 0402714 | Zbl 0322.55001
Theory of Retracts, Wayne state University Press, 1965. (1965) | MR 0181977 | Zbl 0145.43003
Homotopy Theory, Academic Press, 1959. (1959) | MR 0106454 | Zbl 0088.38803
Stable homeomorphisms and the annulus conjecture, Annals of Maths. 89 (1969) 575 - 582. (1969) | MR 0242165 | Zbl 0176.22004
Maps of a fully normal space into an absolute neighbourhood retract, Sci. Reports Tokyo Kyoiku Daigaku, Sect. A 5 (19S5) 37-47. (19S5) | MR 0067485
A note on closed N-cells in $R^N$, Comment. Math. Univ. Carolinae 23 (1982) 355 - 357. (1982) | MR 0664980