Extensions of $k$-subsets to $k+1$-subsets - existence versus constructability
Poljak, Svatopluk ; Turzík, Daniel ; Pudlák, Pavel
Commentationes Mathematicae Universitatis Carolinae, Tome 023 (1982), p. 337-349 / Harvested from Czech Digital Mathematics Library
Publié le : 1982-01-01
Classification:  03D15,  05-04,  05A05,  05C38,  68C05,  68R99
@article{106156,
     author = {Svatopluk Poljak and Daniel Turz\'\i k and Pavel Pudl\'ak},
     title = {Extensions of $k$-subsets to $k+1$-subsets - existence versus constructability},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {023},
     year = {1982},
     pages = {337-349},
     zbl = {0495.68059},
     mrnumber = {664978},
     language = {en},
     url = {http://dml.mathdoc.fr/item/106156}
}
Poljak, Svatopluk; Turzík, Daniel; Pudlák, Pavel. Extensions of $k$-subsets to $k+1$-subsets - existence versus constructability. Commentationes Mathematicae Universitatis Carolinae, Tome 023 (1982) pp. 337-349. http://gdmltest.u-ga.fr/item/106156/

T. Baker J. Gill R. Solovay Relativizations of the $P=?NP$ question, SIAM J. Comp. Vol. 4 (1975), 431-442. (1975) | MR 0395311

C. Berge Graphs and Hypergraphs, North-Holland, Amsterdam (1973). (1973) | MR 0357172 | Zbl 0254.05101

J. A. Bondy V. Chvátal A method in graph theory, Discrete Mathematica 16 (1976), 111-135. (1976) | MR 0414429

V. Chvátal On Hamiltonian's ideals, Jouгnal of Combinatorial Theory 12 (1972), 163-168. (1972) | MR 0294155

J. E. Hopcroft R. M. Karp Ann $n^{5/2}$ Algorithm for Maximal Matchings in Bipartite Gгaphs, SIAM J. Comp. Vol. 2 (1973), 225-231. (1973) | MR 0337699

C. P. Schnorr Optimal algoгithms for self-reducible problems, Automata, Languages and Programming 1976, Eds.: S. Michaelson and R. Milner, University Press Edinburgh, 322-337. (1976)

A. G. Thomasom Hamiltonian cycles and uniquely edge colourable graphs, Advances in Graph Theoгy B. Bollobás, ed., Annals of Discrete Mathematics 3 (1976), 259-268. (1976) | MR 0499124

C. Greene D. J. Kleitman Pгoof techniques in the theory of finite sets, Studies in Combinatorics, pp. 22-79, MAA Studles in Math. 17, Math. Assoc. America, Washington, D.C., 1978. (1978) | MR 0513002