@article{106064, author = {Lud\v ek Zaj\'\i \v cek}, title = {On the symmetry of Dini derivates of arbitrary functions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {022}, year = {1981}, pages = {195-209}, zbl = {0462.26003}, mrnumber = {609947}, language = {en}, url = {http://dml.mathdoc.fr/item/106064} }
Zajíček, Luděk. On the symmetry of Dini derivates of arbitrary functions. Commentationes Mathematicae Universitatis Carolinae, Tome 022 (1981) pp. 195-209. http://gdmltest.u-ga.fr/item/106064/
Most directional cluster sets have common values, Fund. Math. 101 (1978), 1-10. (1978) | MR 0512239
A theorem on arbitrary functions of two variables with applications, Fund. Math. 16 (1930), 17-24. (1930)
Differentiation of real functions, Lecture notes in Mathematics, No. 659, Springer Verlag, 1978. (1978) | MR 0507448 | Zbl 0382.26002
The boundary behaviour of real functions in the upper half plane, Rev. Roumaine Math. Pures Appl. 11 (1966), 507-518. (1966) | MR 0206173
The boundary properties of arbitrary functions, Russian, Izv. Akad. Nauk SSSR, Ser. Mat. 31 (1967), 3-14. (1967) | MR 0217297
Directional cluster sets ana essential directional cluster sets of real functions defined in the upper half plane, Rev. Roumaine Math. Pures Appl. 23 (1978), 533-542. (1978) | MR 0492273
Sur les fonctions de la première classe de Baire, Bull. Internat. Acad. Sci. Boheme 1926. (1926)
Sur les fonctions de deux variables reélies, Fund. Math. 27 (1936), 147-150. (1936)
When finely continuous functions are of the first class of Baire, Comment. Math. Univ. Carolinae 18 (1977), 647-657. (1977) | MR 0457646
Controle dans les inéquations variationelles elliptiques, J. Functional Analysis 22 (1976), 130-185. (1976) | MR 0423155 | Zbl 0364.49003
A theorem on derivatives, Acta Sci. Math. Szeged, 23 (1962), 79-81. (1962) | MR 0140624 | Zbl 0105.04602
Theory of the Integral, New York, 1937. (1937) | Zbl 0017.30004
On cluster sets of arbitrary functions, Fund. Math. 83 (1974), 197-217. (1974) | MR 0338294
Sets of $\sigma $ -porosity and sets of $\sigma $ -porosity $(q)$, Časopis pěst. mat. 101 (1976), 350-359. (1976) | MR 0457731 | Zbl 0341.30026