There is no universal separable Fréchet or sequential compact space
Bashkirov, Aleksandr I.
Commentationes Mathematicae Universitatis Carolinae, Tome 022 (1981), p. 161-168 / Harvested from Czech Digital Mathematics Library
Publié le : 1981-01-01
Classification:  54A25,  54C05,  54D55,  54D99
@article{106061,
     author = {Aleksandr I. Bashkirov},
     title = {There is no universal separable Fr\'echet or sequential compact space},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {022},
     year = {1981},
     pages = {161-168},
     zbl = {0478.54021},
     mrnumber = {609944},
     language = {en},
     url = {http://dml.mathdoc.fr/item/106061}
}
Bashkirov, Aleksandr I. There is no universal separable Fréchet or sequential compact space. Commentationes Mathematicae Universitatis Carolinae, Tome 022 (1981) pp. 161-168. http://gdmltest.u-ga.fr/item/106061/

[11 A. I. Bashkirov On continuous maps of Isbell spaces and strong $0$-dimensionality, Bull. Pol. Acad. Sci. 27, 7 (1979), 605-611. (1979) | MR 0581560

A. I. Bashkirov On Fréchet compactifications of discrete spaces, ibid. (to appear). | MR 0620205 | Zbl 0487.54021

R. Engeiking General Topology, Warszawa, 1977. (1977)

S. P. Franklin Spaces in which sequences suffice, II, Fund. Math. 61 (1967), 51-56. (1967) | MR 0222832 | Zbl 0168.43502

S. Mrówka On completely regular spaces, ibid. 41 (1954), 105-106. (1954) | MR 0063650