@article{106060, author = {V\'aclav Kub\'at}, title = {On simultaneous integrability of two commuting almost tangent structures}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {022}, year = {1981}, pages = {149-160}, zbl = {0456.53021}, mrnumber = {609943}, language = {en}, url = {http://dml.mathdoc.fr/item/106060} }
Kubát, Václav. On simultaneous integrability of two commuting almost tangent structures. Commentationes Mathematicae Universitatis Carolinae, Tome 022 (1981) pp. 149-160. http://gdmltest.u-ga.fr/item/106060/
Simultaneous integrability of an almost tangent structure and a distribution, preprint. | MR 0895009
Intégrabilité des $G$-structures définies par une $1$-forme $0$-déformable a valeurs dans le fibre tangent, Ann. Inst. Fourier, Grenoble 16, 2 (1966), 329-387. (1966) | MR 0212720 | Zbl 0145.42103
The integrability of a structure on a differentiable manifold, Tôhoku Math. J. 1965, 17, 72-75. (1965) | MR 0187172 | Zbl 0125.39605
On the integrability of a structure defined by two semisimple $0$-deformable vector $1$-forms which commute with each other, Tôhoku Math. J. 1965, 17, No. 2, 171-177. (1965) | MR 0184164
Note on the integrability conditions of $(\varphi, \psi)$ structures, Tôhoku Math. J. 1966, 18, No. 4, 368-377. (1966) | MR 0216418
Hung-Ching Chow Sixty-Fifth Anniversary Volume, Math. Research Center Nat. Taiwan Univ., dec. 1967. (1967) | MR 0224408
On the differentiable manifold admitting tensor fields $(F,G)$ of type $(1,1)$ satisfying $F^3 + F = 0, G^3 + G = 0, FG = - GF, F^2 = G^2$, Tensor 1964, 15, No. 3, 269-274. (1964) | MR 0169184
Simultaneous integrability of two $J$-related almost tangent structures, Comment. Math. Univ. Carolinae 20 (1979), 461-473. (1979) | MR 0550448
A Nijennuis-type tensor on the quotient of a distribution, Comment. Math. Univ. Carolinae 21 (1980), 201-208. (1980) | MR 0580677
Simultaneous integrability of analmost complex and an almost tangent structure, Czech. Math. Journal (in print).