@article{106052, author = {Enayet U, Tarafdar}, title = {On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II.}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {022}, year = {1981}, pages = {37-58}, zbl = {0461.47034}, mrnumber = {609935}, language = {en}, url = {http://dml.mathdoc.fr/item/106052} }
Tarafdar, Enayet U,. On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. II.. Commentationes Mathematicae Universitatis Carolinae, Tome 022 (1981) pp. 37-58. http://gdmltest.u-ga.fr/item/106052/
Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces, J. Functional Anal. 39 (1968), 217-245. (1968) | MR 0244812
The topological degree and the Galerkin approximations for non-compact operator in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 641-646. (1968) | MR 0229100
A generalized degree for uniform limits of $A$-proper mappings, J. Math. Anal. Appl. 35 (1971), 536-552. (1971) | MR 0281069 | Zbl 0215.21304
Coincidence degree and non-linear differential equations, Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.) Springer-Verlag (1977). (1977) | MR 0637067
Investigation of some properties of bounded linear opeгators in connection with their $q$-norm, Uch. Zap. Kishinev, Gos. Univ. 29 (1957), 29-36. (1957)
Some remarks on $\phi_+$ opeгators and on the coincidence degree for Fгedholm equation with non-compact nonlineaг perturbation, Ann. Soc. Sci. Bruxelles Ser. I 89 (1975), 497-508. (1975) | MR 0385653
Some problems of nonlinear analysis, Amer. Math. Soc. Transl. (2) 10 (1958), 345-409. (1958) | MR 0094731
Sur les espaces complets, Fund. Math. 15 (1930), 301-309. (1930)
Equivalence Theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610-636. (1972) | MR 0328703 | Zbl 0244.47049
The fixed point index for local condensing maps, An. Mat. pura Appl. (4) 89 (1971), 217-258. (1971) | MR 0312341 | Zbl 0226.47031
Degree theory for local condensing maps, J. Math. Anal. Appl. 37 (1972), 741-766. (1972) | MR 0306986 | Zbl 0232.47062
On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory I, Comment. Math. Univ. Carolinae 21 (1980), 805-823. (1980) | MR 0597769 | Zbl 0463.47046
On the rotation of condensing vector fields, (Russian), Probl. Matem., Analiza Slozhn. Sist. No. 2, Voronezh (1968), 84-88. (1968) | MR 0293469