@article{106045, author = {Enayet U, Tarafdar}, title = {On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I.}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {021}, year = {1980}, pages = {805-823}, zbl = {0463.47046}, mrnumber = {597769}, language = {en}, url = {http://dml.mathdoc.fr/item/106045} }
Tarafdar, Enayet U,. On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I.. Commentationes Mathematicae Universitatis Carolinae, Tome 021 (1980) pp. 805-823. http://gdmltest.u-ga.fr/item/106045/
Perturbation theory for generalized Fredholm operators, Pacific J. Math. 52 (1974), 11-15. (1974) | MR 0353034 | Zbl 0267.47010
Perturbation theory for generalized Fred-holm operators, II, Transactions Amer. Math. Soc. 62 (1977), 72-76. (1977) | MR 0435896
On nonlinear integral equations of the Hammerstein type, "Integral Equations", Madison Univ. Press, lilladison, 111 (1964), 99-154. (1964) | MR 0161113 | Zbl 0123.29603
Existenzsätze für die Lösungen gewisser nicht-linear Rand-wertaufgaben, Z. Angew. Math. Mech. 45 (1965), 22-29; Abh. Deutsch. Akad. tfiss. Berlin Kl. (1965) | MR 0205123
Coincidence degree and non-linear differential Equations, Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.), Springer-Verlag (1977). (1977) | MR 0637067
Some remarks on $\phi_+$ operators and on the co-incidence degree for Fredholm equation with non-compact nonlinear perturbation, Ann. Soc. Sci. Bruxells Ser. I 89 (1975), 497-508. (1975) | MR 0385653
Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type, Comment. Math. Univ. Carolinae 16 (1975), 121-138. (1975) | MR 0364814 | Zbl 0298.47034
Linear Topological Spaces, Graduate Texts in Mathematics, 36, Springer-Verlag (1964). (1964)
Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locality convex topological vector spaces, J. Differential Equations 12 (1972), 610-636. (1972) | MR 0328703
On the existence of the solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory II, Comment. Math. Univ. Carolinae 21 (1980). (1980) | MR 0597769