On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I.
Tarafdar, Enayet U,
Commentationes Mathematicae Universitatis Carolinae, Tome 021 (1980), p. 805-823 / Harvested from Czech Digital Mathematics Library
Publié le : 1980-01-01
Classification:  47A50,  47A55,  47H10,  47H15,  47J05
@article{106045,
     author = {Enayet U, Tarafdar},
     title = {On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I.},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {021},
     year = {1980},
     pages = {805-823},
     zbl = {0463.47046},
     mrnumber = {597769},
     language = {en},
     url = {http://dml.mathdoc.fr/item/106045}
}
Tarafdar, Enayet U,. On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I.. Commentationes Mathematicae Universitatis Carolinae, Tome 021 (1980) pp. 805-823. http://gdmltest.u-ga.fr/item/106045/

Caradus S. R. Perturbation theory for generalized Fredholm operators, Pacific J. Math. 52 (1974), 11-15. (1974) | MR 0353034 | Zbl 0267.47010

Caradus S. R. Perturbation theory for generalized Fred-holm operators, II, Transactions Amer. Math. Soc. 62 (1977), 72-76. (1977) | MR 0435896

Dolph C. L.; Minty G. J. On nonlinear integral equations of the Hammerstein type, "Integral Equations", Madison Univ. Press, lilladison, 111 (1964), 99-154. (1964) | MR 0161113 | Zbl 0123.29603

Ehrmann H. Existenzsätze für die Lösungen gewisser nicht-linear Rand-wertaufgaben, Z. Angew. Math. Mech. 45 (1965), 22-29; Abh. Deutsch. Akad. tfiss. Berlin Kl. (1965) | MR 0205123

Gaines R. E.; Mawhin J. L. Coincidence degree and non-linear differential Equations, Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.), Springer-Verlag (1977). (1977) | MR 0637067

Hetzer G. Some remarks on $\phi_+$ operators and on the co-incidence degree for Fredholm equation with non-compact nonlinear perturbation, Ann. Soc. Sci. Bruxells Ser. I 89 (1975), 497-508. (1975) | MR 0385653

Hetzer G. Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type, Comment. Math. Univ. Carolinae 16 (1975), 121-138. (1975) | MR 0364814 | Zbl 0298.47034

Kellet J. L.; Namioka I. Linear Topological Spaces, Graduate Texts in Mathematics, 36, Springer-Verlag (1964). (1964)

Mawhin J. Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locality convex topological vector spaces, J. Differential Equations 12 (1972), 610-636. (1972) | MR 0328703

Tarafdar E. On the existence of the solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory II, Comment. Math. Univ. Carolinae 21 (1980). (1980) | MR 0597769