Perpetual options and Canadization through fluctuation theory
Kyprianou, A. E. ; Pistorius, M. R.
Ann. Appl. Probab., Tome 13 (2003) no. 1, p. 1077-1098 / Harvested from Project Euclid
In this article it is shown that one is able to evaluate the price of perpetual calls, puts, Russian and integral options directly as the Laplace transform of a stopping time of an appropriate diffusion using standard fluctuation theory. This approach is offered in contrast to the approach of optimal stopping through free boundary problems. Following ideas of Carr [Rev. Fin. Studies 11 (1998) 597--626], we discuss the Canadization of these options as a method of approximation to their finite time counterparts. Fluctuation theory is again used in this case.
Publié le : 2003-08-14
Classification:  Option pricing,  perpetual option,  call option,  put option,  Russian option,  integral option,  stopping time,  Laplace transform,  Brownian motion,  Bessel process,  60G40,  60G99,  60J65
@article{1060202835,
     author = {Kyprianou, A. E. and Pistorius, M. R.},
     title = {Perpetual options and Canadization through fluctuation theory},
     journal = {Ann. Appl. Probab.},
     volume = {13},
     number = {1},
     year = {2003},
     pages = { 1077-1098},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1060202835}
}
Kyprianou, A. E.; Pistorius, M. R. Perpetual options and Canadization through fluctuation theory. Ann. Appl. Probab., Tome 13 (2003) no. 1, pp.  1077-1098. http://gdmltest.u-ga.fr/item/1060202835/