@article{106016, author = {Eric K. Douwen}, title = {Nonsupercompactness and the reduced measure algebra}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {021}, year = {1980}, pages = {507-512}, zbl = {0437.54014}, mrnumber = {590130}, language = {en}, url = {http://dml.mathdoc.fr/item/106016} }
Douwen, Eric K. Nonsupercompactness and the reduced measure algebra. Commentationes Mathematicae Universitatis Carolinae, Tome 021 (1980) pp. 507-512. http://gdmltest.u-ga.fr/item/106016/
Not all compact spaces are supercompact, Gen. Top. Appl. 8 (1978), 151-155. (1978) | MR 0474199
A cellular constraint in supercompact Hausdorff spaces, Can. J. Math. 30 (1978), 1144-1151. (1978) | MR 0511552 | Zbl 0367.54009
A first countable supercompact Hausdorff space with a closed $G_{\delta} $ non-supercompact subspace, Coll. Math. (to appear). | MR 0628178 | Zbl 0474.54012
The compactness number of a compact topological space, Fund. Math. (to appear). | MR 0584490
Density of compactifications, in 'Set theoretic topology', G. M. Reed (ed.). Academic Press, New York (1977), 97-110. (1977) | MR 0442887 | Zbl 0379.54006
Special bases for compact metrizable spaces, Fund. Math. (to appear). | MR 0611760 | Zbl 0497.54031
Supercompact spaces, Top. Appl. (to appear).
Projective topological spaces, III, J. Math 2 2 (1958), 482-489. (1958) | MR 0121775
Supercompactness and superextensions, Contrib. to Extension Theory of Top. Struct. Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin (1969), 89-90. (1967)
General Topology, Van Nostr and Reinhold Cy., New York, 1955. (1955) | MR 0070144 | Zbl 0066.16604
On the character of supercompact topological spaces, Top. Proc. 3 (1978), 227-236. (1978) | MR 0540493
Closed $G_{\delta}$ subsets of supercompact Hausdorff spaces, Indag. Math. 41 (1979), 155-162. (1979) | MR 0535563
A simpler proof that compact metric spaces are supercompact, Proc. AMS 73 (1979), 388-390. (1979) | MR 0518526 | Zbl 0401.54018
Compact topological groups are supercompact, Fund. Math. (to appear).
A nonsupercompact continuous image of a supercompact space, Houston J. Math. 5 (1979), 241-247. (1979) | MR 0546758
Compact metric spaces have binary bases, Fund. Math. 89 (1975), 81-91. (1975) | MR 0383351
Superextensions of topological spaces, Ph.D. dissertation, Univ. of Amsterdam, 1972, Mathematical Centre Tract 41, Amsterdam, 1972. (1972)