On the $A$-Laplacian
Aïssaoui, Noureddine
Abstr. Appl. Anal., Tome 2003 (2003) no. 7, p. 743-755 / Harvested from Project Euclid
We prove, for Orlicz spaces $\mathbf{L}_{A}(\mathbb{R}^N)$ such that $A$ satisfies the $\Delta _2$ condition, the nonresolvability of the $A$ -Laplacian equation $\Delta _{A}u+h=0$ on $\mathbb{R}^N$ , where $\int h\neq 0$ , if $\mathbb{R}^N$ is $A$ -parabolic. For a large class of Orlicz spaces including Lebesgue spaces $\mathbf{L}^p$ ( $p>1$ ), we also prove that the same equation, with any bounded measurable function $h$ with compact support, has a solution with gradient in $\mathbf{L}_{A}(\mathbb{R}^N)$ if $\mathbb{R}^N$ is $A$ -hyperbolic.
Publié le : 2003-07-17
Classification:  46E35,  31B15
@article{1059416442,
     author = {A\"\i ssaoui, Noureddine},
     title = {On the $A$-Laplacian},
     journal = {Abstr. Appl. Anal.},
     volume = {2003},
     number = {7},
     year = {2003},
     pages = { 743-755},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1059416442}
}
Aïssaoui, Noureddine. On the $A$-Laplacian. Abstr. Appl. Anal., Tome 2003 (2003) no. 7, pp.  743-755. http://gdmltest.u-ga.fr/item/1059416442/