The measure extension theorem for subadditive probability measures in orthomodular $\sigma$-continuous lattices
Riečan, Beloslav
Commentationes Mathematicae Universitatis Carolinae, Tome 020 (1979), p. 309-316 / Harvested from Czech Digital Mathematics Library
Publié le : 1979-01-01
Classification:  03G12,  06C15,  06C20,  20A60,  28A60,  81B10
@article{105929,
     author = {Beloslav Rie\v can},
     title = {The measure extension theorem for subadditive probability measures in orthomodular $\sigma$-continuous lattices},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {020},
     year = {1979},
     pages = {309-316},
     zbl = {0413.28006},
     mrnumber = {539559},
     language = {en},
     url = {http://dml.mathdoc.fr/item/105929}
}
Riečan, Beloslav. The measure extension theorem for subadditive probability measures in orthomodular $\sigma$-continuous lattices. Commentationes Mathematicae Universitatis Carolinae, Tome 020 (1979) pp. 309-316. http://gdmltest.u-ga.fr/item/105929/

Gyorffy L.; Riečan B. On the extension of measures in relatively complemented lattices, Mat. časop. 23 (1973), 158-163. (1973) | MR 0338314

Kappos D. A. Measure theory on orthocomplemented posets and lattices, In: Measure theory, Oberwolfach 1975, Proceedings, Springer, Berlin, Lecture notes in math., vol. 541, 323-343. (1975) | MR 0584017

Riečan B. On the extension of a measure on lattices, Mat. čas. 19 (1969), 44-49. (1969) | MR 0304608

Riečan B. A note on the extension of measures on lattices, Mat. časop. 20 (1970), 239-244. (1970) | MR 0304609

Varadarajan V. S. Geometry of quantum theory, Van Nostrand, New York, 1968. (1968) | MR 0471674

Volauf P. The measure extension problem on ortholattices, Acta math. Univ. Comen., to appear. | MR 0619093

Volauf F. Some problems of the probability theory in ordered spaces, PhD dissertation, Bratislava, 1977. (1977)