@article{105815, author = {Svatopluk Fu\v c\'\i k}, title = {Nonlinear equations with linear part at resonance: Variational approach}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {018}, year = {1977}, pages = {723-734}, zbl = {0376.47030}, mrnumber = {0500339}, language = {en}, url = {http://dml.mathdoc.fr/item/105815} }
Fučík, Svatopluk. Nonlinear equations with linear part at resonance: Variational approach. Commentationes Mathematicae Universitatis Carolinae, Tome 018 (1977) pp. 723-734. http://gdmltest.u-ga.fr/item/105815/
Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. Journal 25 (1976), 933-944. (1976) | MR 0427825
On the solvability of semilinear operator equations and elliptic boundary value problems, Bull. Amer. Math. Soc. 78 (1972), 741-745. (1972) | MR 0303374
Nonlinear potential equations with linear parts at resonance, (to appear). | MR 0482425
Variationsrechnung, Teubner Texte zur Mathematik, Teubner, Leipzig, 1977. (1977) | MR 0487654
On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl. 52 (1975), 594-614. (1975) | MR 0420389
Some resonance problems for elliptic boundary value problems, Lecture Notes in Pure and Applied Mathematics No 19: Nonlinear Functional Analysis and Differential Equations (ed.: L. Cesari, R. Kannan, J.D. Schuur), pp. 269-289. M. Dekker Inc., New York and Basel, 1976. (19: ) | MR 0487005
Variational methods for the study of nonlinear operators, (Russian), Moscow 1956. English transl.: Holden-Day, San Francisco, California 1964. (1956) | MR 0176364