Nonlinear equations with linear part at resonance: Variational approach
Fučík, Svatopluk
Commentationes Mathematicae Universitatis Carolinae, Tome 018 (1977), p. 723-734 / Harvested from Czech Digital Mathematics Library
Publié le : 1977-01-01
Classification:  47H15,  47J05
@article{105815,
     author = {Svatopluk Fu\v c\'\i k},
     title = {Nonlinear equations with linear part at resonance: Variational approach},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {018},
     year = {1977},
     pages = {723-734},
     zbl = {0376.47030},
     mrnumber = {0500339},
     language = {en},
     url = {http://dml.mathdoc.fr/item/105815}
}
Fučík, Svatopluk. Nonlinear equations with linear part at resonance: Variational approach. Commentationes Mathematicae Universitatis Carolinae, Tome 018 (1977) pp. 723-734. http://gdmltest.u-ga.fr/item/105815/

S. Ahmad A. C. Lazer J. L. Paul Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. Journal 25 (1976), 933-944. (1976) | MR 0427825

M. S. Berger M. Schechter On the solvability of semilinear operator equations and elliptic boundary value problems, Bull. Amer. Math. Soc. 78 (1972), 741-745. (1972) | MR 0303374

S. Fučík Nonlinear potential equations with linear parts at resonance, (to appear). | MR 0482425

S. Fučík J. Nečas V. Souček Variationsrechnung, Teubner Texte zur Mathematik, Teubner, Leipzig, 1977. (1977) | MR 0487654

A. C. Lazer E. M. Landesman D. R. Meyers On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl. 52 (1975), 594-614. (1975) | MR 0420389

A. C. Lazer Some resonance problems for elliptic boundary value problems, Lecture Notes in Pure and Applied Mathematics No 19: Nonlinear Functional Analysis and Differential Equations (ed.: L. Cesari, R. Kannan, J.D. Schuur), pp. 269-289. M. Dekker Inc., New York and Basel, 1976. (19: ) | MR 0487005

M. M. Vajnberg Variational methods for the study of nonlinear operators, (Russian), Moscow 1956. English transl.: Holden-Day, San Francisco, California 1964. (1956) | MR 0176364