Reversible Complex Hénon Maps
Jordan, C. R. ; Jordan, D. A. ; Jordan, J. H.
Experiment. Math., Tome 11 (2002) no. 3, p. 339-347 / Harvested from Project Euclid
We identify and investigate a class of complex Hénon maps {\small $H:\C^2\rightarrow\C^2$} that are reversible, that is, each H can be factorized as RU where {\small $R^2=U^2=\id_{\C^2}$}. Fixed points and periodic points of order two or three are classified in terms of symmetry, with respect to R or U, and as either elliptic or saddle points. We report on experimental investigation, using a Java applet, of the bounded orbits of H.
Publié le : 2002-05-14
Classification:  Hénon map,  reversibility,  fixed points,  periodic points,  bounded orbits,  ellipticity,  32H50,  37F10,  37C25,  37E15,  37F45
@article{1057777426,
     author = {Jordan, C. R. and Jordan, D. A. and Jordan, J. H.},
     title = {Reversible Complex H\'enon Maps},
     journal = {Experiment. Math.},
     volume = {11},
     number = {3},
     year = {2002},
     pages = { 339-347},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1057777426}
}
Jordan, C. R.; Jordan, D. A.; Jordan, J. H. Reversible Complex Hénon Maps. Experiment. Math., Tome 11 (2002) no. 3, pp.  339-347. http://gdmltest.u-ga.fr/item/1057777426/