A note on a dual finite element method
Haslinger, Jaroslav
Commentationes Mathematicae Universitatis Carolinae, Tome 017 (1976), p. 665-673 / Harvested from Czech Digital Mathematics Library
Publié le : 1976-01-01
Classification:  65N30
@article{105726,
     author = {Jaroslav Haslinger},
     title = {A note on a dual finite element method},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {017},
     year = {1976},
     pages = {665-673},
     zbl = {0361.65095},
     mrnumber = {0431750},
     language = {en},
     url = {http://dml.mathdoc.fr/item/105726}
}
Haslinger, Jaroslav. A note on a dual finite element method. Commentationes Mathematicae Universitatis Carolinae, Tome 017 (1976) pp. 665-673. http://gdmltest.u-ga.fr/item/105726/

B. Fraeijs De Veubeke Displacement and equilibrium models in the finite element method, Stress Analysis, ed. by O. C. Zienkiewicz and G. Holister, J. Wiley, 1965, 145-197. (1965)

B. Fraeijs De Veubeke O. C. Zienkiewicz Strain energy bounds in finite-element analysis by slab analogies, J. Strain Analysis 2 (1967), 265-271. (1967)

V. B., Jr. Watwood B. J. Hartz An equilibrium stress field model for finite element solution of twodimensional elastostatic problems, Int. J. Solids Structures 4 (1968), 857-873. (1968)

B. Fraeijs De Veubeke M. Hogge Dual analysis for heat conduction problems by finite elements, Int. J. Numer. Meth. Eng. (1972), 65-82. (1972)

J. P. Aubin H. G. Burchard Some aspects of the method of the hypercicle applied to elliptic variational problems, Numer. Sol. Part. Dif. Eqs. II, Synspade (1970), 1- 67. (1970) | MR 0285136

J. Vacek Dual variational principles for an elliptic partial differential equation, Apl. mat. 18 (1976), 5-27. (1976) | MR 0412594 | Zbl 0345.35035

G. Grenacher A posteriori error estimates for elliptic partial differential equations, Inst. Fluid Dynamics and Appl. Math., Univ. Maryland, TN-BN-T 43, July 1972. (1972)

J. M. Thomas Méthods des éléments finis équilibre pour les problèmes elliptiques du $2$-ème ordre, To appear.

J. Haslinger I. Hlaváček Convergence of a finite element method based on the dual variational formulation, Apl. mat. 21 (1976), 43-65. (1976) | MR 0398126

J. Haslinger I. Hlaváček Convergence of a dual finite element method in $R_n$, Comment. Math. Univ. Carolinae 16 (1975), 369-486. (1975) | MR 0386303

P. G. Ciarlet P. A. Raviart General Lagrange and Hermite interpolation in $R^n$ with applications to finite element method, Arch. Rat. Mech. Anal. 46 (1972), 177-199. (1972) | MR 0336957

J. H. Bramble M. Zlámal Triangular elements in the finite element method, Math. Comp. 24 (1970), 809-820. (1970) | MR 0282540