@article{105726, author = {Jaroslav Haslinger}, title = {A note on a dual finite element method}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {017}, year = {1976}, pages = {665-673}, zbl = {0361.65095}, mrnumber = {0431750}, language = {en}, url = {http://dml.mathdoc.fr/item/105726} }
Haslinger, Jaroslav. A note on a dual finite element method. Commentationes Mathematicae Universitatis Carolinae, Tome 017 (1976) pp. 665-673. http://gdmltest.u-ga.fr/item/105726/
Displacement and equilibrium models in the finite element method, Stress Analysis, ed. by O. C. Zienkiewicz and G. Holister, J. Wiley, 1965, 145-197. (1965)
Strain energy bounds in finite-element analysis by slab analogies, J. Strain Analysis 2 (1967), 265-271. (1967)
An equilibrium stress field model for finite element solution of twodimensional elastostatic problems, Int. J. Solids Structures 4 (1968), 857-873. (1968)
Dual analysis for heat conduction problems by finite elements, Int. J. Numer. Meth. Eng. (1972), 65-82. (1972)
Some aspects of the method of the hypercicle applied to elliptic variational problems, Numer. Sol. Part. Dif. Eqs. II, Synspade (1970), 1- 67. (1970) | MR 0285136
Dual variational principles for an elliptic partial differential equation, Apl. mat. 18 (1976), 5-27. (1976) | MR 0412594 | Zbl 0345.35035
A posteriori error estimates for elliptic partial differential equations, Inst. Fluid Dynamics and Appl. Math., Univ. Maryland, TN-BN-T 43, July 1972. (1972)
Méthods des éléments finis équilibre pour les problèmes elliptiques du $2$-ème ordre, To appear.
Convergence of a finite element method based on the dual variational formulation, Apl. mat. 21 (1976), 43-65. (1976) | MR 0398126
Convergence of a dual finite element method in $R_n$, Comment. Math. Univ. Carolinae 16 (1975), 369-486. (1975) | MR 0386303
General Lagrange and Hermite interpolation in $R^n$ with applications to finite element method, Arch. Rat. Mech. Anal. 46 (1972), 177-199. (1972) | MR 0336957
Triangular elements in the finite element method, Math. Comp. 24 (1970), 809-820. (1970) | MR 0282540