@article{105673, author = {S. A. McGrath}, title = {On the local ergodic theorems of Krengel, Kubokawa, and Terrell}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {017}, year = {1976}, pages = {49-59}, zbl = {0327.28015}, mrnumber = {0417818}, language = {en}, url = {http://dml.mathdoc.fr/item/105673} }
McGrath, S. A. On the local ergodic theorems of Krengel, Kubokawa, and Terrell. Commentationes Mathematicae Universitatis Carolinae, Tome 017 (1976) pp. 49-59. http://gdmltest.u-ga.fr/item/105673/
A pointwise ergodic theorem in $L_p$ spaces, Canad. J. Math. (to appear). | MR 0550405 | Zbl 1044.47500
A local ratio theorem, Canad. J. Math. 22 (1970), 545-552, (1970) | MR 0264031
Zur Differentiation der Lebesgueschen Integrale, Fund. Math. 22 (1934), 226-256, (1934)
Linear Operators, part I, Interscience, New York, 1958. (1958)
Functional Analysis and Semigroups, rev. ed., Amer. Math. Soc., Providence, RI, 1957. (1957) | MR 0089373
A local ergodic theorem, Inventiones Math. 6 (1969), 329-333. (1969) | MR 0241602 | Zbl 0165.37402
A general local ergodic theorem, Proc. Japan Acad. 48 (1972), 361-465. (1972) | MR 0328023 | Zbl 0254.47013
A local ergodic theorem for semi-groups on $L_p$, Tohoku Math. J. 26 (1974), 411-422. (1974) | MR 0352405
Ergodic theorems for contraction semigroups, J. Math. Soc. Japan 27 (1975), 184-193. (1975) | MR 0397444 | Zbl 0299.47007
A pointwise Abelian ergodic theorem for $L_p$ semigroups, $l\leq p < \infty$, to appear.
The sums of iterates of a positive operator, Advances in Probability and Related Topics, vol. 2 (edited by F. Ney), 87-115, Dekker, New York, 1970. (1970) | MR 0286977 | Zbl 0321.28013
Local ergodic theorems for $n$-parameter semigroups of operators, Contributions to Ergodic Theory and Probability, 262-278, Springer-Verlag, Berlin/Heidelberg/New York, 1970., (1970) | MR 0268357 | Zbl 0204.45406
Functional Analysis, 1st ed., Springer-Verlag, 1965. (1965) | Zbl 0126.11504