@article{105664, author = {Anthony W. Hager}, title = {Real-valued functions on Alexandroff (zero-set) spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {016}, year = {1975}, pages = {755-769}, zbl = {0312.54022}, mrnumber = {0394547}, language = {en}, url = {http://dml.mathdoc.fr/item/105664} }
Hager, Anthony W. Real-valued functions on Alexandroff (zero-set) spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 016 (1975) pp. 755-769. http://gdmltest.u-ga.fr/item/105664/
Additive set functions in abstract spaces, Mat. Sbornik 50 (1940), 30-348; 51 (1941), 563-628; 55 (1943), 169-238. (1940) | MR 0012207 | Zbl 0023.39701
Extensions of zero-sets and of real-valued functions, Math. Zeit. 136 (1974), 41-52. (1974) | MR 0385793
Outline of General Topology, Amsterdam, 1968. (1968) | MR 0230273 | Zbl 0157.53001
Three uniform spaces associated with realvalued functions, Proc. Rome conference on rings of continuous functions 1973, to appear. (1973) | MR 0375243
On uniform spaces, Comment. Math. Univ. Carolinae 16 (1975), 189-199. (1975) | MR 0370516
Rings of Continuous Functions, D. van Nostrand Co., 1960. (1960) | MR 0116199
Rings of functions determined by zero-sets, Pac. J. Math. 36 (1971), 1331-157. (1971) | MR 0320996 | Zbl 0185.38803
On inverse-closed subalgebras of $C(X)$, Proc. London Math. Soc. (3) 19 (1969), 233-257. (1969) | MR 0244948 | Zbl 0169.54005
An approximation technique for real-valued functions, Gen. Top. and Appl. 1 (1971), 415-418. (1971) | MR 0291704 | Zbl 0219.54010
An approximation technique for real-valued functions, 2, preprint 1972. (1972) | MR 0291704
Some nearly fine uniform spaces, Proc. London Math. Soc. (3) 28 (1974), 517-546. (1974) | MR 0397670 | Zbl 0284.54017
Uniformities induced by proximity, cozero- and Baire sets, to appear.
Set Theory, (Chelsea Reprint) New York, 1957. (1957) | Zbl 0081.04601
On the Baire system generated by a linear lattice of functions, Fund. Math. 68 (1970), 51-59. (1970) | MR 0273363 | Zbl 0197.38104
Characterization of classes of functions by Lebesque sets, Czech. Math. J. 19 (1969), 738-744. (1969) | MR 0248291