Asymptotic formulas and critical exponents for two-parameter nonlinear eigenvalue problems
Shibata, Tetsutaro
Abstr. Appl. Anal., Tome 2003 (2003) no. 7, p. 671-684 / Harvested from Project Euclid
We study the nonlinear two-parameter problem $-u^{\prime\prime}(x) + \lambda u(x)^q = \mu u(x)^p$ , $u(x) > 0$ , $ x \in (0, 1)$ , $u(0) = u(1) = 0$ . Here, $1 #60; q #60; p$ are constants and $\lambda,\mu > 0$ are parameters. We establish precise asymptotic formulas with exact second term for variational eigencurve $\mu(\lambda)$ as $\lambda \rightarrow \infty$ . We emphasize that the critical case concerning the decaying rate of the second term is $p = (3q-1)/2$ and this kind of criticality is new for two-parameter problems.
Publié le : 2003-06-16
Classification:  34B15
@article{1056372945,
     author = {Shibata, Tetsutaro},
     title = {Asymptotic formulas and critical exponents for two-parameter nonlinear eigenvalue problems},
     journal = {Abstr. Appl. Anal.},
     volume = {2003},
     number = {7},
     year = {2003},
     pages = { 671-684},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1056372945}
}
Shibata, Tetsutaro. Asymptotic formulas and critical exponents for two-parameter nonlinear eigenvalue problems. Abstr. Appl. Anal., Tome 2003 (2003) no. 7, pp.  671-684. http://gdmltest.u-ga.fr/item/1056372945/