Attracting edge property for a class of reinforced random walks
Limic, Vlada
Ann. Probab., Tome 31 (2003) no. 1, p. 1615-1654 / Harvested from Project Euclid
Using martingale techniques and comparison with the generalized Urn scheme, it is shown that the edge reinforced random walk on a graph of bounded degree, with the weight function $W(k) = k^\rho,\,\rho > 1 $, traverses (crosses) a random attracting edge at all large times. If the graph is a triangle, the above result is in agreement with a conjecture of Sellke.
Publié le : 2003-07-14
Classification:  Reinforced walk,  supermartingale,  coupling,  urn.,  60J15,  60J10
@article{1055425792,
     author = {Limic, Vlada},
     title = {Attracting edge property for a class of reinforced random walks},
     journal = {Ann. Probab.},
     volume = {31},
     number = {1},
     year = {2003},
     pages = { 1615-1654},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1055425792}
}
Limic, Vlada. Attracting edge property for a class of reinforced random walks. Ann. Probab., Tome 31 (2003) no. 1, pp.  1615-1654. http://gdmltest.u-ga.fr/item/1055425792/