Given a bounded class of functions, we introduce a combinatorial
quantity (related to the idea of Vapnik--Chervonenkis classes) that is much more explicit than
the Koltchinskii--Pollard entropy, but is proved to be essentially of
the same order.
@article{1055425790,
author = {Talagrand, Michel},
title = {Vapnik--Chervonenkis type conditions and uniform Donsker classes of functions},
journal = {Ann. Probab.},
volume = {31},
number = {1},
year = {2003},
pages = { 1565-1582},
language = {en},
url = {http://dml.mathdoc.fr/item/1055425790}
}
Talagrand, Michel. Vapnik--Chervonenkis type conditions and uniform Donsker classes of functions. Ann. Probab., Tome 31 (2003) no. 1, pp. 1565-1582. http://gdmltest.u-ga.fr/item/1055425790/