On the sample paths of Brownian motions on compact infinite dimensional groups
Bendikov, Alexander ; Saloff-Coste, Laurent
Ann. Probab., Tome 31 (2003) no. 1, p. 1464-1493 / Harvested from Project Euclid
We study the regularity of the sample paths of certain Brownian motions on the infinite dimensional torus ${\mathbb T}^\infty$ and other compact connected groups in terms of the associated intrinsic distance. For each $\lambda\in (0,1)$, we give examples where the intrinsic distance $d$ is continuous and defines the topology of ${\mathbb T}^\infty$ and where the sample paths satisfy \[ 0<\liminf_{t\ra 0} \frac{d(X_0,X_t)}{t^{(1-\lambda)/2}}\le \limsup_{t\ra 0} \frac{d(X_0,X_t)}{t^{(1-\lambda)/2}}<\infty \] and \[ 0<\lim_{\varepsilon\to 0} \sup_{0
Publié le : 2003-07-14
Classification:  Invariant diffusions,  path regularity,  Gaussian convolution semigroups.,  60J60,  60B99,  31C25,  47D07
@article{1055425787,
     author = {Bendikov, Alexander and Saloff-Coste, Laurent},
     title = {On the sample paths of Brownian motions on compact infinite dimensional groups},
     journal = {Ann. Probab.},
     volume = {31},
     number = {1},
     year = {2003},
     pages = { 1464-1493},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1055425787}
}
Bendikov, Alexander; Saloff-Coste, Laurent. On the sample paths of Brownian motions on compact infinite dimensional groups. Ann. Probab., Tome 31 (2003) no. 1, pp.  1464-1493. http://gdmltest.u-ga.fr/item/1055425787/