Regularity and irregularity of $\bolds{(1+\beta)}$-stable super-Brownian motion
Mytnik, Leonid ; Perkins, Edwin
Ann. Probab., Tome 31 (2003) no. 1, p. 1413-1440 / Harvested from Project Euclid
This paper establishes the continuity of the density of $(1+\beta)$-stable super-Brownian motion $(0<\beta<1)$ for fixed times in $d=1$, and local unboundedness of the density in all higher dimensions where it exists. We also prove local unboundedness of the density in time for a fixed spatial parameter in any dimension where the density exists, and local unboundedness of the occupation density (the local time) in the spatial parameter for dimensions $d\geq2$ where the local time exists.
Publié le : 2003-07-14
Classification:  Super-Brownian motion,  density,  local time,  stochastic partial differential equations.,  60G57,  60G17,  60H15
@article{1055425785,
     author = {Mytnik, Leonid and Perkins, Edwin},
     title = {Regularity and irregularity of $\bolds{(1+\beta)}$-stable super-Brownian motion},
     journal = {Ann. Probab.},
     volume = {31},
     number = {1},
     year = {2003},
     pages = { 1413-1440},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1055425785}
}
Mytnik, Leonid; Perkins, Edwin. Regularity and irregularity of $\bolds{(1+\beta)}$-stable super-Brownian motion. Ann. Probab., Tome 31 (2003) no. 1, pp.  1413-1440. http://gdmltest.u-ga.fr/item/1055425785/