We discuss angular convergence of Riemannian Brownian motion on a
Cartan--Hadamard manifold and show that the Dirichlet problem at infinity
for such a manifold is uniquely solvable under the curvature conditions
$-Ce^{(2-\eta) ar(x)}\le K_M(x)\le-a^2$\vspace*{0.5pt} ($\eta>0$) and
$-Cr(x)^{2\beta} \le K_M(x)\le - \alpha (\alpha-1)/r(x)^2$
($\alpha>\beta+2>2$), respectively.
@article{1055425781,
author = {Hsu, Elton P.},
title = {Brownian motion and Dirichlet problems at infinity},
journal = {Ann. Probab.},
volume = {31},
number = {1},
year = {2003},
pages = { 1305-1319},
language = {en},
url = {http://dml.mathdoc.fr/item/1055425781}
}
Hsu, Elton P. Brownian motion and Dirichlet problems at infinity. Ann. Probab., Tome 31 (2003) no. 1, pp. 1305-1319. http://gdmltest.u-ga.fr/item/1055425781/