@article{105470, author = {Jind\v rich Ne\v cas}, title = {On the range of nonlinear operators with linear asymptotes which are not invertible}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {014}, year = {1973}, pages = {63-72}, zbl = {0257.47032}, mrnumber = {0318995}, language = {en}, url = {http://dml.mathdoc.fr/item/105470} }
Nečas, Jindřich. On the range of nonlinear operators with linear asymptotes which are not invertible. Commentationes Mathematicae Universitatis Carolinae, Tome 014 (1973) pp. 63-72. http://gdmltest.u-ga.fr/item/105470/
Functional analysis and Galerkin's method, Michigan Math. J. 11 (1964), 385-414. (1964) | MR 0173839 | Zbl 0192.23702
A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem, J. Diff. Eq. 8 (1970), 580-586. (1970) | MR 0267267 | Zbl 0209.13003
Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), n. 7, 609-623. (1970) | MR 0267269
Fredholm alternative for nonlinear operators and applications to partial differential equations and integral equations, Sasopis pěst. mat. 97 (1972), 65-71. (1972) | MR 0308882
Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type, Comment. Math. Univ. Carolinae 13 (1972), 109-120. (1972) | MR 0305171
Les méthodes directes en théorie des équations elliptiques, Academia Prague, 1967. (1967) | MR 0227584