On the range of nonlinear operators with linear asymptotes which are not invertible
Nečas, Jindřich
Commentationes Mathematicae Universitatis Carolinae, Tome 014 (1973), p. 63-72 / Harvested from Czech Digital Mathematics Library
Publié le : 1973-01-01
Classification:  35J30,  35J65,  47H10,  47H15,  47H99,  47J05
@article{105470,
     author = {Jind\v rich Ne\v cas},
     title = {On the range of nonlinear operators with linear asymptotes which are not invertible},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {014},
     year = {1973},
     pages = {63-72},
     zbl = {0257.47032},
     mrnumber = {0318995},
     language = {en},
     url = {http://dml.mathdoc.fr/item/105470}
}
Nečas, Jindřich. On the range of nonlinear operators with linear asymptotes which are not invertible. Commentationes Mathematicae Universitatis Carolinae, Tome 014 (1973) pp. 63-72. http://gdmltest.u-ga.fr/item/105470/

L. Cesari Functional analysis and Galerkin's method, Michigan Math. J. 11 (1964), 385-414. (1964) | MR 0173839 | Zbl 0192.23702

S. A. Williams A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem, J. Diff. Eq. 8 (1970), 580-586. (1970) | MR 0267267 | Zbl 0209.13003

E. Landesmm A. Lazar Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), n. 7, 609-623. (1970) | MR 0267269

J. Nečas Fredholm alternative for nonlinear operators and applications to partial differential equations and integral equations, Sasopis pěst. mat. 97 (1972), 65-71. (1972) | MR 0308882

J. Nečas Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type, Comment. Math. Univ. Carolinae 13 (1972), 109-120. (1972) | MR 0305171

J. Nečas Les méthodes directes en théorie des équations elliptiques, Academia Prague, 1967. (1967) | MR 0227584