Existence results for general inequality problems with constraints
Dincă, George ; Jebelean, Petru ; Motreanu, Dumitru
Abstr. Appl. Anal., Tome 2003 (2003) no. 7, p. 601-619 / Harvested from Project Euclid
This paper is concerned with existence results for inequality problems of type $F^{0}(u;v)+\Psi'(u;v)\geq 0$ , for all $v\in X$ , where $X$ is a Banach space, $F:X\rightarrow\mathbb{R}$ is locally Lipschitz, and $\Psi:X\rightarrow(- \infty+\infty]$ is proper, convex, and lower semicontinuous. Here $F^0$ stands for the generalized directional derivative of $F$ and $\Psi'$ denotes the directional derivative of $\Psi$ . The applications we consider focus on the variational-hemivariational inequalities involving the $p$ -Laplacian operator.
Publié le : 2003-05-29
Classification:  47J20,  49J52,  49J53,  58E35
@article{1054513099,
     author = {Dinc\u a, George and Jebelean, Petru and Motreanu, Dumitru},
     title = {Existence results for general inequality problems with constraints},
     journal = {Abstr. Appl. Anal.},
     volume = {2003},
     number = {7},
     year = {2003},
     pages = { 601-619},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1054513099}
}
Dincă, George; Jebelean, Petru; Motreanu, Dumitru. Existence results for general inequality problems with constraints. Abstr. Appl. Anal., Tome 2003 (2003) no. 7, pp.  601-619. http://gdmltest.u-ga.fr/item/1054513099/