A characterization of the eigenvalues of a completely continuous selfadjoint operator
Naumann, Joachim
Commentationes Mathematicae Universitatis Carolinae, Tome 013 (1972), p. 63-78 / Harvested from Czech Digital Mathematics Library
Publié le : 1972-01-01
Classification:  47A05,  47A75,  47A99,  47B05,  49G05,  58E05
@article{105396,
     author = {Joachim Naumann},
     title = {A characterization of the eigenvalues of a completely continuous selfadjoint operator},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {013},
     year = {1972},
     pages = {63-78},
     zbl = {0232.47027},
     mrnumber = {0305207},
     language = {en},
     url = {http://dml.mathdoc.fr/item/105396}
}
Naumann, Joachim. A characterization of the eigenvalues of a completely continuous selfadjoint operator. Commentationes Mathematicae Universitatis Carolinae, Tome 013 (1972) pp. 63-78. http://gdmltest.u-ga.fr/item/105396/

Achieser N. I.; Glasmann I. M. Theorie der linearen Operatoren in Hilbert-Raum, Akademie - Verlag Berlin, 1968. (1968)

Berger M. S. On von Kármán's equations and the buckling of a thin elastic plate, I. The clamped plate, Comm. Pure Appl. Math. 20 (1967), 687-719. (1967) | MR 0221808 | Zbl 0162.56405

Browder F. E. Variational methods for nonlinear elliptic eigenvalue problems, Bull. Amer. Math. Soc. 71 (1965), 176-183. (1965) | MR 0179459 | Zbl 0135.15802

Krasnoselskij M. A. Topological methods in the theory of nonlinear integral equations, (in Russian), Moscow, GITTL, 1956. (1956)

Lax P. D. A procedure for obtaining upper bounds for the eigenvalues of a Hermitian symmetric operator, Studies in Math. Analysis, Polya Issue, Stanford Univ. Press. Stanford 1962, 199-201. (1962) | MR 0149294 | Zbl 0118.11002

Ljusternik L. A.; Sobolev W. I. Elemente deг Funktionalanalysis, Akademie - Verlag Berlin, 1968. (1968)

Naumann J. Existenzsätze für nichtlineare Eigenwertprobleme, (to appear). | MR 0328710 | Zbl 0256.49048

Stenger W. On the variational principles for eigenvalues for a class of unbounded operators, J. Math. Mech. 17 (1968), 641-648. (1968) | MR 0227800 | Zbl 0157.21302

Vajnberg M. M. Variational methods for the investigation of nonlinear operators, (in Russian), Moscow, GITTL, 1956. (1956)