@article{105380, author = {Vladim\'\i r Sou\v cek}, title = {The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {012}, year = {1971}, pages = {723-736}, zbl = {0256.35030}, mrnumber = {0296786}, language = {en}, url = {http://dml.mathdoc.fr/item/105380} }
Souček, Vladimír. The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains. Commentationes Mathematicae Universitatis Carolinae, Tome 012 (1971) pp. 723-736. http://gdmltest.u-ga.fr/item/105380/
Remark relevant to minimal surfaces and to surface of prescribed mean curvature, Journal d'Analyse Mathematique 14 (1965), 139-160. (1965) | MR 0188909
The spaces of the functions on domain $\Omega $, whose k-th derivatives are measure, defined on $\overline \Omega $, - to appear in Czech. Math. Journ. | MR 0313798
The ultraweak solutions of variational problems over spaces $W_1^(k) $ of the types of nonparametric minimal surface, - to appear.
On new results in the theory of minimal surfaces, Bull. Amer. math. Soc. 71 (1965), 195-270. (1965) | MR 0173993 | Zbl 0135.21701
Variational problems of minimal surface type II., Arch. Rat. Mech. Anal. 21 (1966), 321-342. (1966) | MR 0190811