The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains
Souček, Vladimír
Commentationes Mathematicae Universitatis Carolinae, Tome 012 (1971), p. 723-736 / Harvested from Czech Digital Mathematics Library
Publié le : 1971-01-01
Classification:  35D05,  35J25,  35J60,  35J67,  49F10,  49Q05,  53A10
@article{105380,
     author = {Vladim\'\i r Sou\v cek},
     title = {The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {012},
     year = {1971},
     pages = {723-736},
     zbl = {0256.35030},
     mrnumber = {0296786},
     language = {en},
     url = {http://dml.mathdoc.fr/item/105380}
}
Souček, Vladimír. The nonexistence of a weak solution of Dirichlet's problem for the functional of minimal surface on nonconvex domains. Commentationes Mathematicae Universitatis Carolinae, Tome 012 (1971) pp. 723-736. http://gdmltest.u-ga.fr/item/105380/

R. Finn Remark relevant to minimal surfaces and to surface of prescribed mean curvature, Journal d'Analyse Mathematique 14 (1965), 139-160. (1965) | MR 0188909

J. Souček The spaces of the functions on domain $\Omega $, whose k-th derivatives are measure, defined on $\overline \Omega $, - to appear in Czech. Math. Journ. | MR 0313798

J Kačúr J. Nečas J. Souček The ultraweak solutions of variational problems over spaces $W_1^(k) $ of the types of nonparametric minimal surface, - to appear.

J. C. C. Nitsche On new results in the theory of minimal surfaces, Bull. Amer. math. Soc. 71 (1965), 195-270. (1965) | MR 0173993 | Zbl 0135.21701

H. Jenkins J. Serrin Variational problems of minimal surface type II., Arch. Rat. Mech. Anal. 21 (1966), 321-342. (1966) | MR 0190811