Bounded solutions of Carathéodory differential inclusions: a bound sets approach
Andres, Jan ; Malaguti, Luisa ; Taddei, Valentina
Abstr. Appl. Anal., Tome 2003 (2003) no. 7, p. 547-571 / Harvested from Project Euclid
A bound sets technique is developed for Floquet problems of Carathéodory differential inclusions. It relies on the construction of either continuous or locally Lipschitzian Lyapunov-like bounding functions. Proceeding sequentially, the existence of bounded trajectories is then obtained. Nontrivial examples are supplied to illustrate our approach.
Publié le : 2003-05-14
Classification:  34A60,  34B15,  34B40
@article{1053348486,
     author = {Andres, Jan and Malaguti, Luisa and Taddei, Valentina},
     title = {Bounded solutions of Carath\'eodory differential inclusions: a
bound sets approach},
     journal = {Abstr. Appl. Anal.},
     volume = {2003},
     number = {7},
     year = {2003},
     pages = { 547-571},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1053348486}
}
Andres, Jan; Malaguti, Luisa; Taddei, Valentina. Bounded solutions of Carathéodory differential inclusions: a
bound sets approach. Abstr. Appl. Anal., Tome 2003 (2003) no. 7, pp.  547-571. http://gdmltest.u-ga.fr/item/1053348486/